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ABSTRACT

An analysis of molecular collisions which centers attention on
internal excitation during collisions is reviewed.

In the zeroth order description no eﬁergy transfer between
kinetic energy of relative motion and internal energy is allowed.
The evolution of the system is then analyzed as a sequence of cor-
rections to this description. The theory thus centres attention on
the migration of energy from kinetic energy of relative motion to
internal excitation and back. The collision event can involve par-
ticipation of states (which are stable to zero order) where the
kinetic energy has been traunsfered into internal energy, so that the
resulting motion is a bounded relative motion of internally excited
collision partners. These states have only a temporary existence,

as eventually energy flows back into the relative motion.
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I. Introduction

The theorstical descripticn of collisicns between systems with
internal degrees of fresdom has recently received considerable atten-
tion. -3 The primary aim is to cbtain a description of the relative
motion of the collision parcmers which takes account of the possibility
of internal excitation during the collision precess. 1In other words
one seeks an eguation of motion for the degree of freedom of relative
motion of the collision partmers, which takes an implicit, but exact,
account of the other degrees of freedom.

When cnly a small numbsr of internal states should be taken into
account, one can obtain a fairly explicit solution of the problem,
and this is reviewed in section II. The aim here is to review the
basic ideas involved and not tc generate approximation schemes.

Section III introduces the same concepts from an explicitly time-
dependent point of view. A general discussion of the method, which

n this field is presented

Fe

forms the background for subsequent work
in section IV.
II. Interral Excitation.
Consider the collision between a structureless particle A and
a molecule B-T with cone internal degree of freedom, which we describe

by coordinate r ., We assume that beside the ground state the molecule
B-C has several low-lying excited states that are discrete (bound).
In other words we assume that for low energies the moticon in the
coordinate is quantized.

If ho is the internal Hamiltonian of the molecule B-C , we

can write

ho b (rY = €, b, O (1)
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where ¢n(r) is a wave function for the n'th internal excited state,
and, as usual, wave functions for different excited states are

orthogonal,

(2)

Cﬁ; (0) Cbnc\(\ C{T =

SH,JIM, .

The excited states are labelled in the order of increasing energy
e, < e, <z .. .
Before the collision event A and B-C are far apart and
non-interacting. The total energy, E, of the collision partners
is then the sum of the internal energy of B-C and the kinetic
energy of motion. If B-C 1is unexcited before the collision,

and if the energy of the center of mass of the whole system is

factored out

Ezel-t—‘h,zle}/p_))v, (3)

where M is the reduced mass of the system A+BC , and tik 1is
their relative momentum.

If P is the distance from A to the center of mass of
B-C , the kinetic energy operator, K, for the relative motion of

A and B-C 1is

K = = (B* [2.1) VPZ . )

The Hamiltonian, Ho’ that governs the evolution of A and

B-C prior to the collision is




Ho = K+h, . (5)

During the collision A interacts with B-C and the

>

interaction is determined by a potential energy operator V(r,P)

so that the total Hamiltonian H that describes the collision is
H=Hs+\V . (6)

The wave function l;{r,P) that describes the course of

the collision is the solution of the Schroedinger equation

(E“HB\P(V,P}:o )

with the given value of the energy E which is determined by the
initial conditions (equation 3). This does not imply, however,
that during the collision B-C remain unexcited. Due to the

mutual interaction V energy can be transfered from kinetic

>

energy of relative motion into internal excitation of B-C .

A quantitative characterization of such a phenomena should

provide a measure of the internal excitation of B-C during
the collision. The simplest way of obtaining such a description

is to put

G lvnp) = 3 anlpd Py (v) - (8)
n




The significance of the, yet undetermined, coefficients 62V\(E>3 is

easily seen when we compute, using equation 2.

-’-\PfLP*thWCY,pM\r =2 lawpd\zap, ©
n

The left hand side is the quantum mechanical probability of observing
the colliding systems witb a relative separation of P to P + AP .
We can thus interpret IQM,(_P_SIZAP as the probability of
finding the system with a separation P to P + AF when the
internal state n is excited.

We shall thus refer to an(P) s

&n (PN = 5 b Y P YAy (10)

as the amplitude (strictly speaking it is the amplitude density
since f> is continuous) to find the n'th internal state of B-C
excited when the relative,separation of A and B-C 1is f> .
It should be remembered (although we have not indicated this
explicitly) that an(F) is a function of E .

Thus, before the collision l L l':l while after the

collision‘fvclM[ZJS'is the observed probability that B-C is
permanently exciteu intc the n'th state as a result of the
collision,

The internal Hamiltonian hO can also have a continuous
spectrum which corresponds to high internal excitation of B=-C

when the motion in the cocordinste r is no longer bounded.




If the index n , in equation 8 tskes discrete values only, then
the assumed sclution for q)(r,F>) is at best approximate since it
takes no account of the possibility of permanent (or temporary)
dissociation of B-C . We shall evaluate this approximation later.
If the total energy E 1is low sc that E < 632 we expect
that after the collision l@,ln,lz =0 , n¥1 . This need not

where the kinetic energy

hold however for finite values of P

of relative motion can be negative, in the sense that the motion
in (~ can be bounded. 1In other words, during the collision

. 2.2 . . . ,
energy in excess of ik /2}4, can flow into internal excitaticn,

with the result that A is now bound to B-C and B-C 1is

s
internally excited. Eventually energy will be transfered back
from internal energy of B-C into energy of relative motion

and A and B-C will start to separate from one another.

Even though B-~C cannot be permanently excited, it can be
temporarily excited during the collision. The resulting unstable
system is similar to that normally invoked in theories of uni-
molecular breakdown,4 where the delay in fragmentation is due to
the time lag necessary to transfer energy from internal exci-
tation to energy of unbounded relative motion. Similar ideas
have proved fruitful in the theory of nuclear collisions (i.e.
Bohr's compound nucleus). Recently it has become clear that
similar phencmena play a role in electron-molecule collisions,
when a molecule can temporarily bound an extra electron (which

5,6
corresponds in our scheme to A) while being internally excited.”’



It is also to be expected that the process of energy transfer
from energy of relative motion into internal excitation and then
back into energy of relative motion can take place several times
; L s 7
in the course of a single ccllision.

The amplitudes ap(f)) satisfy equation 11 below which is

obtained by using the assumed form for 4) in the Schroedinger

%
equation, premultiplying by ¢n (r) and integrating over r ,

[E- K- Hpp (P ] &n (P :Z‘ anMLPBQ\M (e, an
m-

where

Huw (Y = § X @ [h, +V ]y, poyd

(12)

- 62V7 E;VL)MA- + \/ablvt (G))

In matrix notation

[l

O (13)

[(e-=)I-H] a

where I 1is the unit matrix a 1is a column vector of components

a, , and (E)nm = Hppy -

Equation 13 is best sclved using the partitioning technique,
as is discussed in section IV. To examine the main features of
the solution we shall restrict the discussion to the case when

the index n assumes only two values n = 1,2 , so that

3

[E- Kk = Hop ()] Ralf) = Hy (@ u(p),




[E- K= By (@ &R = Hip(P) @y(E) . 4D

Consider the homogenous forms of these equations. For
E > 62n, n=1,2, ,,;the Hamiltonian K + Hnn(f)) will have a con-
tinuous spectrum which correspond to the unbounded relative motion
of A and B-C in its n'th internal state. If the potential
sz(fb) is attractive,the Hamiltonian K + H22(F>) will also
have bound states gi(f>) , i=1,2,..., of energies below 632 .
These correspond to a bounded relative motion of A and the

molecule B-~C in its first excited state. Thus

[Ez,— K = HaPY] Ge(pY=0, Egcey  ww

and

[E- K- vaCP}] Qé\o\(@j:() LV Eve,. o

The formal solution, for ai(f>) , namely8

Ry = [E¥ = K = Hop(p)] ™ Har (P Ri(P) | ®

can be written out explicitly using the complete set of states

of sz( (:>) as

%L(P)f %f () By, (P Qu(p') de'
E-EL a7

+ Contributions from the Continum.

QlCP) = Z



cu

For E<e2 the contrikution from the continuum is small
compared to the contribution of the bound states. As f>4>ao the

. 8
contribution from the continucm has the form

eXP["PJez" E —]

and each of the bound state wave functions is also exponentially

decreasing at infinity. Thus, as expected

Q, () —> ©
J E <82_

C —> oo r

When E ~ Ei , the P dependence of a2(6>) is essentially
that of gi(f)) , so that as the total energy increases az(f>)
gradually changes shape, tracing the successive bound states of
the potential sz(f)) . Thus az(F>) can assume significant
value during ( f) finite) the collision even though no
permanent internal excitation can occur.

The formal solution for az(f>) (equation 16) is substituted

in equation 1l4b to give

[E--tada) =HaE- k- H,u]  Hya, - 0@

The homogenous form of this equation has a solution for any
possible E , (E > & l) , equation 15b. This functicn corresponds
to a collision event subject tc the Hamiltonian K + Hll(F>) s
namely a Hamiltonian that takes nc account of internal exci-

tations of B-C.




The actual solution al(F>) takes implicit account of the internal

excitation via the added '"potential”

HIZ [E" K- sz]_~‘ H2_|

which can be written explicitly as

' %
Z LHZ(P) %’L[P) ! %LCP‘)H1|((>‘_)+ continuum
A

— - . contribution.
E-E_

Since E‘<632 the contribution of the continuum is nonpositive
definite, so that the first term is an upper bound to the true
potential. We have indicated explicitly the fact that due to
the presence of internally excited states this potential is,
in principle, non-local. 1In practice it can often be approximated
. 7

by a local potential.

Equation 18 is now g single variable equation, and can be

solved using the usual procedure of scattering theory. Thus

Gy = 0 4+ [E* k-] Hig [E- K =Hos 17,4,

is the integral equation that determines the form of qJ for
large fD . There are clearly two contributions to al(fb) s
namely al(o) which is the amplitude to find the system with
relative separation f> , when B-C 1is, and always has been,

in its ground state. The second term is enhancement of this

4
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amplitude due to the possikility that B-C has previocusly been in
an internally excited state.

The course of the coliision can be followed by iterating the
integral equation 19. A trial value for a; is used in the right
hand side, a new value is computed and used as a trial value, and
so on.

(o)

a; is a solution of a simple Schroedinger equation, with

a local potential, and in the present context it is assumed
(o)

known. Using a; © as a trial value we get the following series,

which we write schematically as

(o) ()
&i:aio + G, Hp Gos Hy, AD +

where
G = (E™= = Hm Y™ , EY=E+ice

and the limit &=+ 0 is to be taken cnly after all the implied

integrations in equsation 20 have been performed.

The above prescription of the limiting operation insures that
each term behaves when 6>-4> A7 as an ocutgeing wave as is
required by the physical problem. The above specification also
insures that the evolution of the system is forward in time.

This is explicitly demonstrated in section III, where it is

shown that one can read equation 20 as if time moves from right

10



to left, or in other words in a given term in equation 20, events to
the left occur. later than events which are to the right.

Successive terms of equation 20 differ by the factor
G11H12G22H21 which corresponds to the eventof excitation transfer
from relative kinetic intc internal energy (H2l) , evolution as
an internally excited state (Gzz) and the eventual transfer of
excitation back to kinetic energy (le) . The last event. in any

term (G corresponds to the unbounded relative motion of A

11)
and B-C in its ground state.

In the third term in equation 20 we see for the first time
the process of healing, in that after the first time that B-C
was excited and de-excited the systems although performing an

unbounded relative motion (G are knocked by a potential

11)
(H21) back into an internally excited state, before they had
time to separate completely. Higher order tefms in this equation
exhibit several healing processes.

We therefore expect: that if we let A and B-C colide
and observe the "fragmentation" of the collision complex, that

the process will require some finite time since some systems will

separate rapidly, having never undergone any internal excitation,
some will be slightly delayed, and some, due to many healing

events will be very slow in separating. A quantitative discussion
of this point is given in section III.

The above discussion is subject however to a certain
reservation, namely that there is mo significant delay due to the
potential Hll(ﬁ)) . Such a time delay cannot be due to internal

excitation, but can be due to the functional form of Hll(F>) itself.
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In particular the centrifugal barrier may cause a delay in the events
described by a, ( ) itself. As we shall argue below (equation 31)
this feature is in fact explicitly present in our results, but may
require special attention in the interpretation of experimental

results.

(o)

1 can be written

The formal soclution for a2 in terms of a

as

[E - K - H &y H';Q_l Qz = Mz QalCOB > (@)

using equations 14 and 19.
The transitions ¢2—»-¢l and ¢l-4>¢2 need not, in general
occur at the same value of e - The relevant operator

H21G11H12 is thus non-local. It can be written explicitly as

JdE
E-g!

f”y_l (p! ) &(o}*(p‘_,‘ ') Q.,(\o3 LPJ E j\"‘hz(@)

where
[E'- - Hupd 1 ) (p;e) =0

Due to the continuous spectrum of the Hamiltonian K +H11 s
the Green's operator G11 possess an imaginary part. In the
present context this implies that not all the systems that undergo
the transition ¢2-%>¢1 will undergo the reverse process. The
probability of being in an internally excited state is not constant

in time, since the system may undergo a permanent transition to the




unexcited state in that A and unexcited B=~C separate without
healing.
The magnitude of the imaginary part of the effective potential

for a, is determined by the identity

m CE+—K~H|Q~\ =-T & (BE-K ~Hu S

(22)

so that

‘W‘ Hzté! I H\g =
(23)

-“YAE‘ Hav (e O (01T (E—E) 9 (pjE") Hulp) -
€5

From equations 14 and 21 we obtain a closed solution for a;

= 04(0\ + éln H‘lz[E - H22 "H,Zt (EtK- H‘HA‘l HTQ:T~l Hzn Qt(f)\'

(24)

In this equation the role of internally excited states is completely
accounted for by the Green's operator in the square bracket.
In the neighborhood of Ei we can approximate az(fl) s

using equation 17, by

&y, = ’E?—ELQ f%«l(P') Hoy (D Qu(eVde’ > (25)




so that
(26)
; §§L . | i
Q\T—." 04[0> + Qn H’lz E—Ebg%bte)\—b\(e‘)a)(@)de‘ “6

which can be solved, by premultiplying by ggL(Fﬁ{{21(¥>) and

integrating over f) to give

f%‘,aﬂ Hoi(Paupd d e =

(27)
E-e)J g (PYHai (e Al (pXdp
E-EL~—- r‘bLEX
where
TL(E)= (%;,lH;z\élu PHQ[%} (28)

:ondPAF‘ %JCF)H&[E)CTI“ (6,00 e (eY %) ,

will pose an imaginary part. From equation 23

lm T (E) =17 | f A (Y H21(P) QORI 1P W(E) > 29

where tO(E) 1is the density of states.

It is of interest to examine the behaviour of 624Cfi> for
s-wave scattering. In this case there is no centrifugal barrier
and one expects the phdse shifts due to the potential Hll(fD)

to be slowly varying as function of the energy. Thus for P —=>&

4



P —> 20

From equation 26

Qulp) = &4(0') (pd + fe‘u (e Py His () %&[{)‘)d@l X

) % (Y 2P prd
E-E_- T_i,(55\

Using equation 23, 26, and 30 we have as f) —> pJ

: 2.8 |1
Qe = U (p) - kP [T ()
E-EL— Ti(E)

(31)

LS+

=e sw (kp+8 +A) )

where

A =-TW! T/ [E- Ei-RUiEY] 62

is the phase shift due to the internal states.

The total phase shift is the sum of the phase shift 2; s
due to the potential Hll only plus the phase shift 4\ due to
the occupation of the internally excited states. Formally A
is the phase shift due to the effective potential H

128208, 11

equation 18.

15
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The resolution of the phase shift into two contributions is
just one example of the integral Hellmann-Feynman theorem. (For
other applications see ref. 9). The change in the density of states

. . . . 10
in one dimensional moticr due to the potential Vll is given by

/*(03 — jé clé: ' s §
h JE (33a)

The actual change in the demsity of states is

2 Jd(E+aA)
A= L JE = A 4 Ll'\. ——ZISA ' (33b)

Various statistico-mechanical quantities can be defined in
terms of the density of states of the system. In the dilute gas
phase the lowest corrections to the isolated molecule approxi-
mation are those due to binary encounters between molecules.
The change in the density of states due to these encounters is -
given by A(E) (equation 33b). Most statistico-mechanical

expressions are linear in A |

B= L (A1 ;

Lim,+ Aoy = Liny+ L {A5Y

so that

RB=2 4+ AR , )
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where A%: L{H-—- HLDX:S is due to internal excitation

during the collision. As we shall show in section III equation 33

is also relevant to computing the duration of collisions.

III. The Time Evolution

At a given time the probability to observe A and B-C at a
relative separation  , can be written as a sum of the
probabilities to observe A and B-C in the n'th internal state
at a relative separation F> , (Eqation 9). The different
events "B-C is in the n'th internal state" are thus mutually
exclusive. In other words the reduced density matrix X(P, P‘)
that determines the behaviour in the coordinate f) is diagonal

in the index n

¥(epd= [urir )by p)dy :

(35)
= % G (PYan(p) -

Let U Lt) be the evolution operator
DB = oxp [~ LHE/K) L e

The reduced evolution operator that determines the evolution

of the relative separatibn is defined by

Ule e E)

i

(W) UEE) W(r, o) drdy!

=2 Q) (lDEDIM> Qu(p) > G

e




where

mlulEdIm>= §¢:(v3<rlott)lk‘> b (e drdy! .

ulp, p'y + ) 1is the amplitude that, if the system were observed with
relative separation F)' , it will be found at a time t with relative
separation F) . This expression is not diagonal in the index of
internal states since for a finite time t transitions between internal
states are possible. The matrix elements <Y\lULt)]lM> are, of course,
operators on O .

The evolution operator that determines the forward evolution in

time U N (t) is defined by

U ()= 8 (t)u(t) (38)

where @ (t) is the step function that vanishes for negative values
of its argument, and is unity otherwise. It then follows that

U-+ (t) can be written as the Fourier transform of the convolution
of the Fourier transforms of U(t) and the step function.10

U (t) = (2T iyt f exp(-Et)(ET-H) MdE , E = E + i€ (39)

1

where (E-'---H)-l is the convolution of (E-H)- and (Eﬂi-)-1 .

I1f we denote G+ = (E+'=-.H)-l so that

t-m ¢t =1 (40)

we can evaluate the matrix elements <vi| G+ |M> . 1In the two

state approximation we find, by taking the n,m expectation

18



values of both sides of equation 40,

[E™ -k -H, (pdI@r iy = 4+ K (p)<21&t 1y ¢la)
[E™- & = Hap(eV 121G 27 =1 +Ha )G 12> @)
[E*- K - By ]<tlg*lzo= Ho (PdlEt 2y wto

so that, for example

216712 =[E - K- Ha~ Ha Gt 1™ 5 @

where

@, = [E+"K - Hnj—‘

Equation 24 can now be written as

@, = O—l(o\"‘ G H2<2l & 12> Ry 04(03 > (43)

and the iterated form, equation 20 corresponds to the iteration

of <2\C1[+12> in terms of G22

65;22_== C,EE‘L" < - P4;2213—-‘ .

The iteration is thus inherently time ordered.

19



To incorporate explicitly the initial conditions before the

. s S . . . ﬂll
collision it is convenient to introduce the M@ller wave operator .

Consider the evolution of the intial, pre-collision, state of the
system, in the agbsence of the mutual interaction between A and B-C.

Let h Ct) be the state of this hypothetical system at time ¢t

The actual state of the system LL’tt) is then given by
LEy=nt) - (44)

if Vltt) is not a sharp energy state it can be written as

) = [$E) exbl-iEt/M)bE)dE 5 @

where @(E) is an eigenstate of H
(E-H) b (E)=0 | H(EY= explikpdH (0

so that it corresponds to an initial state for a collision with a
well defined energy. In practice the energy is nof well defined
but has a spread of values. The density function £(E) is
defined so that f(E)dE 1is the probability of an initial state
to have an energy between E and E+IE . The actual initial

state in a collision with £(E) as the energy density is

[fedEVdE .

1
The M¢llar wave operator, R , is linear in the sense that t

20



Vitd= [Pe) exbCietA) NdbE)E - wn

_fL(i)Ué) is thus an eigenstate of H that evolved from the state
@(E) of the same total energy E .

It can be shown that an operator definition for _fl is given

byll

(™~ Hj—\ = (L U_‘—:-_\—" H'ol_‘ ' (48)

The matrix elements of the wave operator have been previously
determined when we solved for q) in section II. Thus, from

equations 8, 44 and 45

Alby= [ L exp CLEY ) Qi dE . oo

There are two sources of energy variation;of the integrand.
f(E) which is the experimental energy resolution of the initial
state (equation 45) and val(f>) (equation 43). al(F>) can be
resolved into al(o)(la)' which (at least for an s-wave) is
slowly varying and a component due to internal excitation which
can, in some energy interval, vary rapidly, as function of E .

In the same fashion

2Py = YFLE) exp(~iEtRR)GadE - (50)

21
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As P — 0 the second amplitude decreases exponentially (E < & 2) R

and the amplitude observe the system with a relative separation P

éP —>po) , at time t 1is given by (1 \Ll)t&)>

For an s-wave, when only cne vibrational state gi(F>) is

intemally excited, we hdve using equations 31 and 49

ALY = [F(E) exp - ietir) e piulkp+5EY1dE

-fpa;) exp [ilkp-EL/x)] 2By AV . oo

The first integral, I\ CtB , is the contribution from the
collisions that did not involve internal excitation. If F(t)
is the Fourier transformiof f(E) and bl(t) is the value of

the integral when £(E) 31 , we have that
L(ﬂ=§b. (t-<VE(c\Vd T .

If f£(E) is a slowly varying function of E

L)~ b, (B)F(0) '

The second integral, being the contribution due to intermal
#

excitation is given, when 4\ (E) 1is rapidly varying, as

L) b, (6 [defeplsE]

where

ba() = [ expEietind om[a(B)lexplikp) dE -
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The exact result for Iz(t) is, of course, the convolution of
F(t) , bZ(t) and the Fourier transform of exp ELOQP +28 )j
Using equation 32, and neglecting the variation of TL(jE)

with E

b

by ()] ~ expEfUm T (E- P/ ART] ) (52)

where IQP = ZEF/V\\/ and U is the average relative
velocity of the initial collision partners.

An alternative way to evaluate the integrals is by a stationary
phase argument. We want tc compute the delay At , in the time
required for a signal to reach the detector at position e due
to the interaction. In the absence of interaction the intensity

is given by (ﬂq@;)) with, for an s-wave,

P (E) = sm Ueép)dm ey

Due to the interaction the intensity is (4'\[_)[:(:)> with

(1 (f) siven by equation 31. For a given value of © the
significant values of the integrals occur for values of t that
differ by the delay time A t . Since the significant values of

each integral occur for those values of t that the integrands

are stationary, we have from equation 31

ol 5+
At = 2z _[_é) . (53)

'hz al ; E
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(cf. equation 33b. For an alternative derivation see for example
references 10 and 113}.
In the same fashion we can use the iterated expression for al(Fa)
(equation 20), in equation 49. For an s-wave when only one vibra-

tional state gi((a) is relevant

Q) - e‘*gsw Chp+d) +

P - o
» e RPTED) ElmEb[Z(E E4,> ] >4

As is evident, higher values of n , which correspond to several
transitions in and out of the state gi(Fa) contribute to higher
values of t in IZ(t} »  Thus successive orders of the iteration

correspond to events of incregsing duration.

IV. Discussion

In general there are several internal states of B-C that
should be taken inrto account even when only H22(f>> is in the
energy region ¢f interest. To consider this case it is convenient

to partition the matrix equation 13 as

[F-k-Hula, = Vo
(55)




where

Q. Ry Vv
Q = H o= - .
- af/ } - \/+ 1
These equations reduce to equations 14 when E} =a, . The one

component equation that corresponds to equation 18 can now be

written as
{E—K"Hu ‘\_[[(E*K)l*ﬁ“]-l\_/i.,] O,=0 + (56)

The effective potential can be written explicitly in terms

of the eigenfunctions of the Hamiltonian
kKT + HY

Due to the coupling terms Vnm(F,) (n,m # 1) these eigenfunctions
cannot be identified with a potential generated by a particular
excited state of B-C .
Consider a '"'step-ladder" model where only near-neighbours
. X H =
are coupled (In the sense that n,m Hn,mé;,m + Hn,ms;,mtl)'

For the simple case of only three internal states equation 55 can

be written

(E - K= Hy)ay =Hy,

(E-K- H22) a, - H a; = HZl a; ,

(E -K -

4
)
o

Hys) ag - Hyy 2y =



so that

Ay = (E-K - Haxz ,)—\ Has Qo

and

[E-K- Hop - Haz (E-K = Haa Y ' Hap R, = Ha O -

Even if H22(f>) is not binding, the last term in the square
bracket may modify H22(f>) sufficiently to cause binding. 1In
particular when E 1is below the lowest eigenvalue of K + H33 s
this term is non-negative definite.

Consider a division of the internal state of B-C into two

classes. Equation 55 is now written

[CE'K)_L - H_u ] Q/l = L_J @’2.

(57)
[E-KII,- Hazf@, = Lf.@l

so that

{(E‘ K)L -Hy - QEE‘K>£2” Bzz:rl Q+}Q«|=D(58)

is the effective Schroedinger equation for the first group only.

If
- Q4
G&‘ - GLZ.> *

we replace equations 14 by
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(E'K"U“)a,l :-Lrl?.a/?_
: (58)

CE"’K' Uzz) aZ_:UZl Q, >

where

—Lj— = - - ~1
nwm \/V),W, + Eq >2\/M"P ([CE K)IZ ljZZ] )P,qvﬁ)m .(59)

Equations 58 bear formal resemblance onlyéto equations 14
since U is in principle a non-local potential. It should
be borne in mind howeveréthat under suitable conditions it can
often be approximated by a local potential. One of the possible
criteria for the original division of the states of B-C 1is the
generation of a potential S which can be approximated by a
local potential. 1In this way the distortion of the [ motion
due to the high excited internal states can be taken into

account within the formal machinery of a few-state approximation.

As is known it is possible to carry out a partitioning of

. . . , 7,12
a wave function using a projection operator fdrmalism. ’ The

discussion in section 1I corresponds to introducing a projection

operator P ,

P =ld Xl , PZ=dXbIdy<bIl=P, o
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so that

PY

1oy [ ) b p)dr

(61)

it

d?t(.\'y QA4 LP) :

The approximation of considering only two internal states

corresponds to restricting the complement of P , I-P , to

I-p = 'd>z><d>zt .

The corrections to this approximation are introduced by

putting

I-P =|Cb2><d>zl+&) Q'Cbz>=o y

and eliminating (3?\¥) , which leads to equation 58.
Other choices for P are clearly possible, in that P q) is
only defined so that as P._>w

, it includes no internally

excited states. One can, for example, define I’4) by

Pb = aedd, (rlp)

where a;l L\(—l()) is the adiabatic electronic wave functions

that tends to ¢1(r) as 63 —~>»a7 . These aspects of the problem
will be discussed in a separate report.

o -Tﬁe-author would like to thank Professor R. B. Bernstein, at
whose suggestion this report was written, for reading and criticizing

the manuscript. He would also like to thank Dr. D. A. Micha for

his comments.
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